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PURPOSE
This retrospective study aims to evaluate the use of multi-parametric magnetic resonance imag-
ing (MRI) in predicting lymph-vascular space invasion (LVSI) in early-stage cervical cancer using 
radiomics methods.

METHODS
A total of 163 patients who underwent contrast-enhanced T1-weighted (CE T1W) and 
T2-weighted (T2W) MRI scans at 3.0T were enrolled between January 2014 and September 2019. 
Radiomics features were extracted and selected from the tumoral and peritumoral regions at dif-
ferent dilation distances outside the tumor. Mann–Whitney U test, the least absolute shrinkage 
and selection operator logistic regression, and logistic regression was applied to select the pre-
dictive features and develop the radiomics signature. Univariate analysis was performed on the 
clinical characteristics. The radiomics nomogram was constructed incorporating the radiomics 
signature and the selected important clinical predictor. Prediction performance of the radiomics 
signature, clinical model, and nomogram was evaluated with the area under the curve (AUC), 
specificity, sensitivity, calibration, and decision curve analysis (DCA).

RESULTS
A total of 5 features that were selected from the peritumoral regions with 3- and 7-mm dila-
tion distances outside tumors in CE T1W and T2W MRI, respectively, showed optimal discrimi-
native performance. The radiomics signature comprising the selected features was significantly 
associated with the LVSI status. The radiomics nomogram integrating the radiomics signature 
and degree of cellular differentiation exhibited the best predictability with AUCs of 0.771 (speci-
ficity (SPE) = 0.831 and sensitivity (SEN) = 0.581) in the training cohort and 0.788 (SPE = 0.727, 
SEN = 0.773) in the validation cohort. DCA confirmed the clinical usefulness of our model.

CONCLUSION
Our results illustrate that the radiomics nomogram based on MRI features from peritumoral 
regions and the degree of cellular differentiation can be used as a noninvasive tool for predicting 
LVSI in cervical cancer.

Cervical cancer, as the fourth common female malignancy worldwide,1 is becoming 
one of the leading causes of cancer death,2 with over 300 000 deaths worldwide 
per year.3 Lymph-vascular space invasion (LVSI), including blood vessel invasion and 

lymphatic vessel invasion, is closely related to lymph node metastasis and distant metasta-
sis in cervical cancer, which often lead to poor prognosis.4 Since the 5-year survival rate for 
metastatic cervical cancer is only 16.5%, early diagnose of LVSI is essential in making timely 
therapeutic decision and improving prognosis for patients.5 However, radiologists still can-
not reliably predict the risk of LVSI through preoperative imaging due to the absence of spe-
cific imaging biomarkers.6 Progress in magnetic resonance imaging (MRI)-based assessment 
of cervical cancer has been significant during the last decades.7,8 The contrast-enhanced 
T1-weighted (CE T1W), T2-weighted (T2W), and diffusion-weighted imaging (DWI) MRI 
have been used for the prediction of LVSI in cervical cancer.9-11 However, conventional MRI is 
based on subjective visual assessments and has low overall performance.12 The main reason 
might be that some predictive quantitative features related to LVSI are hidden in higher 
dimension and can hardly be recognized through visual inspection.
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In recent years, radiomics approaches 
have received increasing attraction due to 
the impressive abilities of high-throughput 
extraction of quantitative imaging fea-
tures and the subsequent analysis using 
statistical methods and machine learning 
classifiers to develop models for tumor 
diagnosing, staging, and therapeutic 
response predicting.13-15 Previous efforts 
have indicated the good potential of MRI-
based radiomics in predicting lymph node 
metastasis,16,17 parametrial invasion,18 and 
therapeutic outcomes19,20 in cervical cancer. 
These findings suggested that radiomics 
can contribute to revealing associations 
between MRI radiomics features and the 
underlying pathophysiology of cervical can-
cer. While the existing reports on MRI-based 
radiomics in predicting the LVSI in cervical 
cancer were limited and have an inherent 
bias with a limited number of patients and 
features types, a recent study revealed that 
CE T1W MRI could give partial information 
in evaluating the LVSI status.4 Although the 
study was preliminary since the prediction 
accuracy was only 60% by the developed 
model with CE T1W MRI, the results were 
encouraging, which enlightened us on the 
association of MRI features with the LVSI sta-
tus in cervical cancer. Another recent report 
assessed the values of DWI combined with 
DCE T1W and T2W MRI in predicting the 
LVSI in cervical cancer and generated AUCs 
ranging from 0.659 to 0.814.21 However, the 
study has limitations since only 66 features 
were evaluated from 56 enrolled patients. 
Besides, the published work both focused 
on the tumoral regions, without consider-
ing information from peritumoral regions.

In this study, we evaluated the tumoral 
and peritumoral regions in the CE T1W and 
T2W images on predicting the LVSI status 
in cervical cancer and developed a fusion 

radiomics nomogram model for potential 
clinical applications.

Methods
Patients

The retrospective research was approved 
by the ethics committee of our hospital 
(No.2013010) and informed consent was 
waived. A total of 163 early-stage cervical 
cancer patients who were pathologically 
confirmed as having early-stage cervical 
cancer in the hospital from January 2014 to 
September 2019 were enrolled. The num-
bers of the patients with or without LVSI 
were 65 and 98, respectively. Among the 163 
patients, there were 94 cases of stage IB1, 17 
cases of stage IB2, 45 cases of stage IIA1, and 
7 cases of stage IIA2. There were 143 cases of 
squamous cell carcinoma, 13 cases of adeno-
carcinoma, and 7 cases of adenosquamous 
carcinoma. All patients underwent radical 
hysterectomy and systemic pelvic lymph-
adenectomy, with the gold standard of his-
tologic results available within 2 weeks after 
MRI. The inclusion criteria were: (1) having 
undergone surgical resection with patholog-
ical confirmation, 2) complete CE T1W and 
T2W imaging data being recorded within 2 
weeks before the surgery, and 3) being older 
than 18 years. The exclusion criteria were: 
1) having a history of preoperative therapy 
(e.g. radiotherapy), 2) being companied with 
other cervical or tumor disease, 3) missing 
MRI data or histological result, and 4) having 
received conization treatment. All patients 
were randomly divided into a training cohort 
and a validation cohort with a stratified sam-
pling ratio of 2 : 1.

Magnetic resonance imaging 
acquisition

Preoperative MRI was performed by a 
radiologist with 12 years of work experience 
using a 3.0T scanner (Siemens Magnetom 
Verio) with an 8-channel array sensitivity 
encoding abdominal coil. The DCE MRI was 
performed using 0.1 mmol/kg gadolinium-
diethylenetriamine penta-acetic acid as 
contrast media, with an injection speed  
of 3.0 mL/s, followed by the sagittal CE 
T1W scanning. The imaging protocols of  
CE T1W and T2W MRI are as follows: (1) sag-
ittal CE T1W images were obtained with 
repetition time/echo time (TR/TE), 600/11 
ms; field of view (FOV), 250 × 218 mm; the 
number of excitations (NEX), 2; flip angle, 
150; pixels spacing, 0.390 × 0.390 mm; slice 
thickness, 4 mm; spacing between slices, 

4.8 mm; acquisition matrix, 640-560. (2) 
Sagittal T2-weighted images were obtained 
with TR/TE, 3800/116 ms; FOV, 250 × 220 
mm; NEX, 2; flip angle, 120; pixels spacing, 
0.558 × 0.558 mm; slice thickness, 4 mm; 
spacing between slices, 4.8 mm; acquisi-
tion matrix, 448-396. Prior to the imaging, 
patients were asked to drink water so as to 
fill the bladder and placed in a supine posi-
tion. The MRI scanning that covered the 
entire pelvis was performed approximately 
20 min later so that the patients would have 
stable breathing during the scanning. The 
MRI parameters and body position were 
consistent for all patients.

Tumor segmentation and mask 
dilation

The obtained MRI images were stored 
in the picture archiving and communica-
tion system in a DICOM format. For each 
patient, the regions of interest (ROIs) cov-
ering the whole tumor were drawn along 
the border of the tumor slice by slice in the 
CE T1W and T2W images by a radiologist 
with 12 years of work experience using the 
software ITK-SNAP (version 3.6.0, www.
itk-snap.org). Another senior radiologist 
with 15 years of experience validated all  
manual delineations. The delineated ROIs 
were stored in an NII format for further 
analysis. Figure 1 shows the examples of 
the CE T1W and T2W  images and manually 
delineated ROIs.

To evaluate the prediction performance 
of peritumoral regions, the original ROI 
mask was progressively enlarged with dif-
ferent radial distances outside the tumor 
at 1 mm intervals (up to a dilation distance 
of 10 mm) using a “SimpleITK” package in 
Python version 3.6. As such, 10 new masks 
representing different peritumoral regions 
were obtained for each patient. Both the 
tumoral and progressively enlarged peritu-
moral regions were used for further analy-
sis. Figure 2 illustrated the process of the 
tumor region dilations.

Radiomics feature extraction
A total of 2990 radiomics features were 

extracted from the tumoral and peritumoral 
regions. The radiomics features consisted of 
18 first-order statistics, 14 shape-based, and 
75 texture features. The original MRI images 
were also filtered by wavelet, laplacian of 
gaussian, local binary pattern, square root, 
square, logarithm, exponential, gradient, and 
laws filters to generate transformed images. 
The transformed MRI images were then used 

Main points

• Radiomics features were extracted and  
analyzed from contrast-enhanced T1- 
weighted and T2-weighted magnetic reso-
nance imaging for predicting lymph-vascu-
lar space invasion (LVSI) in cervical cancer.

• The LVSI prediction performance of 
tumoral and peritumoral regions in 
the 2 MRI sequences was analyzed and 
compared.

• The radiomics nomogram integrating the 
radiomics signature and degree of cellular 
differentiation was constructed and evalu-
ated for potential clinical application of 
our radiomics model.
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to extract the first-order statistics and texture 
features. All the feature extraction and trans-
formation process, except for laws transfor-
mation, was achieved with the Pyradiomics 
package (https ://py radio mics. readt hedoc 
s.io/ en/) according to a previous report.22 To 
perform laws transformation, the original MRI 
images were filtered with 15 2-dimensional 
laws filters, with the 2-dimensional kernels 
obtained by using the calculation as follows:

Kernel L L L L i ji j i j j i,
’ ’( * * ) / , , , ,= + " =2 1 2 5�

where Li and Lj represent the 5 1- 
dimensional kernels [L1-L5], which 

depict level, edge, spot, wave, and ripple  
texture patterns, respectively. A detailed 
description of the laws transformation pro-
cess can be found in a previous report.23

Radiomics feature selection
To obtain discriminative features, first, 

Mann–Whitney U test was performed for 
each feature using the “stats” package  
in R language version 3.6. Features with  
P < .05 were considered as distinguish-
able features and retained. Afterward, 
the least absolute shrinkage and selec-
tion operator logistic regression was  
performed to eliminate irrelevant and 

redundant features using the “glmnet” pack-
age in R version 3.6. Third, a logistic regres-
sion model using the Akaike information 
criterion (AIC) as the stopping rule was per-
formed to further select the features.

Development of the radiomics 
signature, clinical model, and 
radiomics nomogram

The radiomics signature was developed 
by logistic regression using the selected 
radiomics features weighted by corre-
sponding logistic coefficients. A clinical 
model was established by logistic regres-
sion with predictive clinical characteristics 

Figure 1. a-d. Examples of the magnetic resonance images used in this study. (a), a contrast-enhanced T1-weighted (CE T1W) image of a cervical cancer 
patient without lymph-vascular space invasion (LVSI); (b), a T2-weighted (T2W) image of the same patient as shown in (a); (c), a CE T1W image of a patient 
with LVSI; (d), a T2W image of the same patient as shown in (c). The red lines indicate the regions of interest (ROIs) drawn by radiologists.

Figure 2. a-b. Examples of the dilated masks with different dilation distances on the CE T1W (a) and T2W (b) images. The red region represents the 
original tumor region that was segmented by radiologists. Each colorful ring indicates a 2 mm-wide dilation.

https://pyradiomics.readthedocs.io/en/
https://pyradiomics.readthedocs.io/en/
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(P < .05) using the AIC as the stopping 
rule. An easy-to-use radiomics nomogram 
model was constructed integrating the 
radiomics signature and the important 
clinical predictor using “rms” package in 
R version 3.6 to facilitate visualization of 
the logistic regression model for potential 
clinical use.

Statistical analysis and validation 
strategy

Clinical characteristics including age, 
pregnancy, parturition, abortion, age of first 
intercourse, alkaline phosphatase, platelet, 
red blood cell, white blood cell, degree of 
cellular differentiation, squamous cell car-
cinoma antigen, federation international of 

gynecology and obstetrics stage, menstrual 
status and cancer antigen 125 were retrieved 
from the electronic medical records system of 
our hospital. Mann–Whitney U test and Chi-
square test were used to evaluate the corre-
lations between the LVSI status and clinical 
characteristics on continuous variables and 
discrete variables, respectively. P < .05 was 

Figure 3. The work flow of this study.

Table 1. Characteristics of cervical cancer patients in training and validation cohorts

Characteristic

Training cohort (n = 108) Validation cohort (n = 55)

LVSI+ LVSI− P LVSI+ LVSI− P

Age (years), mean ± SD 49.42 ± 9.16 51.11 ± 9.43 .27 52.23 ± 9.75 52.94 ± 9.03 .89

Pregnancy, n, mean ± SD 2.72 ± 1.50 2.84 ± 1.37 .58 3.63 ± 1.70 3.12 ± 1.58 .32

Parturition, n, mean ± SD 1.39 ± 0.82 1.47 ± 0.68 .45 1.72 ± 0.55 1.42 ± 0.75 .045

Abortion, n, mean ± SD 1.32 ± 1.08 1.35 ± 1.29 .81 1.90 ± 1.63 1.60 ± 1.41 .54

AFI (years), mean ± SD 22.09 ± 3.35 21.60±3.32 .57 22.45 ± 2.89 22.06 ± 4.00 .31

ALP (U/L), mean ± SD 88.90 ± 33.77 89.30 ± 24.42 .43 83.09 ± 26.48 88.78 ± 29.24 .61

PLT (109/L), mean ± SD 254.16 ± 53.07 258.24 ± 56.30 .73 234.86 ± 48.01 247.97 ± 59.49 .29

RBC (1012/L), mean ± SD 4.45 ± 0.37 4.47 ± 0.43 .79 4.49 ± 0.35 4.48 ± 0.32 .77

WBC (109/L), mean ± SD 6.33 ± 1.41 6.02 ± 1.47 .34 6.21 ± 2.09 6.54 ± 1.70 .41

CA-125 (U/mL), mean ± SD 18.83 ± 9.27 23.78 ± 23.10 .75 38.26 ± 82.82 17.63 ± 12.27 .42

Degree of cellular differentiation, n (%) .035 .15

Low 16 (37.2) 13 (20.0) 6 (27.3) 7 (21.2)

Middle 25 (58.1) 40 (61.5) 16 (72.7) 21 (63.6)

High 2 (4.7) 12 (18.5) 0 (0.0) 5 (15.2)

FIGO stage, n (%) .78 .80

IB 28 (65.1) 44 (67.7) 16 (72.7) 23 (69.7)

IIA 15 (34.9) 21 (32.3) 6 (27.3) 10 (30.3)

Menstrual status, n (%) .59 .16

Menstruation 16 (37.2) 21 (32.3) 10 (45.5) 9 (27.3)

Menopause 27 (62.8) 44 (67.7) 12 (54.5) 24 (72.7)

SCC, n (%) .77 .91

Normal 13 (30.2) 18 (27.7) 9 (40.9) 13 (39.4)

Abnormal 30 (69.8) 47 (72.3) 13 (59.1) 20 (60.6)

LVSI, lymph-vascular space invasion; SD, standard deviation; AFI, age of first intercourse; ALP, alkaline phosphatase; PLT, platelet; RBC, red blood cell; WBC, white blood cell; 
CA-125, cancer antigen 125; FIGO, federation international of gynecology and obstetrics; SCC, squamous cell carcinoma antigen.
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considered as significant difference. All statis-
tical hypothesis tests were 2-sided. Receiver 
operating characteristic curves were plotted 
using the “pROC” package in R version 3.6. 
The optimal cut-off value was obtained with 
the maximum Youden Index.24 The boxplots 
and unsupervised cluster analysis were per-
formed using the “ggpubr” package in R ver-
sion 3.6 and the “seaborn” package in Python 
version 3.6, respectively. Decision curve anal-
ysis (DCA) was performed to assess the clini-
cal usefulness of the model by calculating 
net benefits for a range of threshold proba-
bilities using the “rmda” package in R version 
3.6. Figure 3 depicts the overall experimental 
design of this study.

Results
Table 1 listed the clinical characteristics 

of cervical cancer patients. The degree of 
cellular differentiation and parturition were 
found to be significantly associated with 
the LVSI status in the training (P = .035) 
and validation cohort (P = .045), respec-
tively. There was no significant difference 

in other characteristics between the LVSI+ 
and LVSI− groups in either the training or 
validation cohorts.

Tables 2 and 3 showed the prediction 
performance of the tumoral regions and 
progressively enlarged peritumoral regions 
in CE T1W and T2W MRI. The results indi-
cated that features derived from the peri-
tumoral regions with 3 and 7 mm dilation 
distances outside the tumor exhibited opti-
mal prediction performance in CE T1W and 
T2W MRI, respectively.

Table 4 listed the prediction performance 
of the 5 most important features selected 
from the 3 and 7 mm dilation distances in 
the peritumoral regions (2 from CE T1W  
and 3 from T2W MRI) and the MRI signa-
tures built based on the features.

Boxplot analysis was performed on the 
5 selected features to illustrate statistical dis-
tributions of the features (Figure 4). Of the 
5 features, 2 showed statistically significant 
differences in both the training and valida-
tion cohorts. The results showed that the val-
ues of log-s igma- 5-0-m m-3D_ gldm_ Depen 

dence Varia nce, original_firstorder_Kurtosis, 
wavelet-LHH_firstorder_Median and laws- 
L5W5_ gldm_ Small Depen dence HighG rayLe 
velEm phasi s in the LVSI+ group tend to be 
larger than those in the LVSI− group. The 
values of origi nal_g lrlm_ LongR unLow GrayL 
evelE mphas is tend to be smaller in the LVSI+ 
group than those in the LVSI− group.

Unsupervised cluster analysis was per-
formed and depicted in Figure 5 to show 
the similarity and affinity between the 
samples. Among the 5 features, the f1 
(T1-l og-si gma-5 -0-mm -3D_g ldm_D epend 
enceV arian ce) showed obvious clusters 
that had different values for the LVSI+ and 
LVSI− groups.

The radiomics signature was developed 
with the 5 selected imaging features and 
shown as follows:

Radiomics signature = −0.5285 + 0.5194 ×  
T1- lo g-sig ma-5-  0-mm- 3D_gl  dm_De 
pende nceVa rianc e + 0.397 2×T1- origi 
nal_f irsto rder_ Kurto sis − 0.2291 × origi 
nal_g lrlm_ LongR unLow GrayL evelE mphas 
is + 0.5680 × T2-wavelet-LHH_firstorder_
Median + 0.4742 × T2-la ws-L5 W5_gl dm_
Sm allDe pende nceHi ghGra yLeve lEmph asis

The degree of cellular differentiation was 
selected as the most important predictor by 
the logistic regression with the smallest AIC 
value. The LVSI risk score was developed by 
integrating the radiomics signature and the 
degree of cellular differentiation and shown 
as follows:

LVSI risk score = −0.5755 × Degree of cellu-
lar differentiation + Radiomics signature

A radiomics nomogram based on the LVSI 
risk score was then constructed as shown in 
Figure 6a. The values of predictors (radiomics 
signature and degree of cellular differenti-
ation) which were mapped to the points axis 
can be transformed into risk points. Then the 
sum of risk points of predictors in the total 
points axis can be mapped to the LVSI risk 
axis to obtain the probability of LVSI. The cali-
bration curves of the radiomics nomogram 
showed good agreements between the 
actual outcomes and the nomogram-esti-
mated probabilities in the training and vali-
dation cohorts (Figure 6b, 6c). As shown in 
Figure 6d and 6e, the nomogram exhibited 
better forecasting ability compared with the 
radiomics signature and the clinical model 
(AUCs in the training cohort, nomogram 

Table 2. LVSI prediction performance of tumoral and peritumoral regions in CE T1W MRI

Dilation distances Number of features Cohorts AUC ACC SEN SPE

0 mm 7 Training cohort 0.820 0.796 0.651 0.908

Validation cohort 0.577 0.600 0.636 0.576

1 mm 3 Training cohort 0.769 0.731 0.535 0.908

Validation cohort 0.649 0.727 0.455 0.909

2 mm 3 Training cohort 0.738 0.713 0.442 0.954

Validation cohort 0.700 0.673 0.545 0.848

3 mm* 2* Training cohort 0.713 0.704 0.488 0.862

Validation cohort 0.758 0.673 0.818 0.667

4 mm 4 Training cohort 0.761 0.704 0.535 0.862

Validation cohort 0.680 0.600 0.955 0.455

5 mm 7 Training cohort 0.793 0.704 0.907 0.569

Validation cohort 0.687 0.673 0.591 0.758

6 mm 8 Training cohort 0.816 0.796 0.814 0.723

Validation cohort 0.581 0.600 1.000 0.212

7 mm 8 Training cohort 0.827 0.833 0.814 0.738

Validation cohort 0.634 0.691 0.409 0.818

8 mm 9 Training cohort 0.844 0.796 0.651 0.908

Validation cohort 0.587 0.545 1.000 0.242

9 mm 4 Training cohort 0.778 0.722 0.721 0.723

Validation cohort 0.551 0.545 0.773 0.394

10 mm 4 Training cohort 0.764 0.722 0.605 0.831

Validation cohort 0.496 0.491 0.909 0.273
0 mm, tumoral region; 1-10 mm, periturmoral regions. 
LVSI, lymph-vascular space invasion; CE T1W, contrast-enhanced T1-weighted; AUC, area under the ROC curve; ACC, 
accuracy; SEN, sensitivity; SPE, specificity.
*Best model with low over-fitting and high AUC values for each sequence.
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vs. radiomics signature vs. clinical model, 
0.771 vs. 0.751 vs. 0.625; AUCs in the valida-
tion cohort, nomogram vs. radiomics sig-
nature vs. clinical model, 0.788 vs. 0.781 vs. 
0.585).

Figure 7 depicted the DCA curves of 
nomogram, radiomics signature, and clini-
cal model. The result showed that within 
most of the threshold probabilities, the 
nomogram had a greater net benefit than 
did the radiomcis signature and clinical 
model, which indicated that our nomogram 
had the best clinical utility for predicting 
the LVSI in cervical cancer patients.

Discussion
The development of noninvasive pre-

operative markers for predicting the LVSI 
is urgent for guiding individual treatment 
decisions.25 We evaluated the LVSI pre-
diction performance of the tumoral and 
peritumoral regions of cervical cancer and 
revealed that the most predictable fea-
tures can be obtained from the peritumoral 
regions with 3 and 7 mm dilation distances 
in the CE T1W and T2W image, respectively. 
The results can be partially explained con-
sidering the fact that tumor cells tend to 
migrate from the primary tumor to sur-
rounding tissues and lead to morphological 
and textural changes within the peritu-
moral regions in medical imaging.26-28 This 
phenomenon has been observed in many 

Table 3. LVSI prediction performance of tumoral and peritumoral regions in T2W MRI

Dilation distances Number of features Cohorts AUC ACC SEN SPE

0 mm 4 Training cohort 0.764 0.722 0.651 0.800

Validation cohort 0.567 0.527 0.818 0.424

1 mm 5 Training cohort 0.784 0.731 0.791 0.646

Validation cohort 0.493 0.564 0.545 0.606

2 mm 6 Training cohort 0.806 0.713 0.721 0.754

Validation cohort 0.596 0.545 0.955 0.273

3 mm 2 Training cohort 0.737 0.676 0.907 0.477

Validation cohort 0.627 0.636 0.455 0.879

4 mm 8 Training cohort 0.860 0.815 0.651 0.954

Validation cohort 0.592 0.545 0.773 0.576

5 mm 5 Training cohort 0.842 0.778 0.767 0.831

Validation cohort 0.624 0.655 0.591 0.697

6 mm 5 Training cohort 0.785 0.657 0.791 0.738

Validation cohort 0.678 0.600 0.864 0.455

7 mm* 3* Training cohort 0.732 0.713 0.535 0.846

Validation cohort 0.689 0.673 0.545 0.818

8 mm 5 Training cohort 0.812 0.750 0.744 0.815

Validation cohort 0.609 0.564 0.682 0.636

9 mm 6 Training cohort 0.796 0.722 0.814 0.692

Validation cohort 0.426 0.600 0.500 0.545

10 mm 5 Training cohort 0.772 0.741 0.860 0.646

Validation cohort 0.474 0.600 0.636 0.485

0 mm, tumoral region; 1-10 mm, periturmoral regions. 
AUC, area under the ROC curve; ACC, accuracy; SEN, sensitivity; SPE, specificity.
* Best model with low over-fitting and high AUC values for each sequence.

Table 4. Prediction performance of the selected features and the MRI Signature

Features Cohorts

Mean ± SD

AUC PLVSI− LVSI+

T1-lo g-sig ma-5- 0-mm- 3D_gl dm_De pende 
nceVa rianc e (f1)

Training cohort 10.205 ± 3.835 12.717 ± 3.848 0.703 <.001

Validation cohort 9.246 ± 3.062 11.250 ± 3.371 0.663 .043

T1-original_firstorder_Kurtosis (f2) Training cohort 4.402 ± 1.336 5.518 ± 2.230 0.636 .017

Validation cohort 4.037 ± 1.259 5.263 ± 1.947 0.755 .001

T2-original_glrlm_
LongRunLowGrayLevelEmphasis (f3)

Training cohort 0.041 ± 0.032 0.028 ± 0.020 0.613 .047

Validation cohort 0.049 ± 0.035 0.035 ± 0.019 0.612 .16

T2-wavelet-LHH_firstorder_Median (f4) Training cohort −0.017 ± 0.049 0.005 ± 0.050 0.618 .039

Validation cohort −0.017 ± 0.045 0.015 ± 0.065 0.612 .16

T2-la ws-L5 W5_gl dm_Sm allDe pende nceHi 
ghGra yLeve lEmph asis (f5)

Training cohort 233.670 ± 86.805 287.558 ± 129.425 0.630 .023

Validation cohort 220.860 ± 75.872 261.074 ± 96.774 0.618 .14

T1-3 mm MRI Signature Training cohort 0.339 ± 0.157 0.487 ± 0.205 0.713 <.001

Validation cohort 0.285 ± 0.122 0.424 ± 0.176 0.758 .001

T2-7 mm MRI Signature Training cohort 0.333 ± 0.168 0.496 ± 0.199 0.732 <.001

Validation cohort 0.295 ± 0.189 0.459 ± 0.260 0.689 .018

SD, standard deviation; LVSI, lymph-vascular space invasion; AUC, area under the ROC curve.
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tumor diseases with discriminative power 
of peritumoral regions demonstrated in 
several recent reports.29-31 Our results sug-
gested that the peritumoral regions of cer-
vical cancer may also provide important 
predictive information on LVSI.

We calculated 2990 radiomics features 
from each MRI sequence for each patient. 
This was far more than a recent study that 
only evaluated 66 features in T2 MRI from 
56 patients.21 A total of 5 features were 
identified as the most important predictors, 

2 from CE T1W and 3 from T2W MRI. The 
LVSI prediction abilities of the features 
from the CE T1W were slightly better than 
those from the T2W MRI (compare AUCs 
and P values of the features from the 2 MRI 
sequences in Table 4). This may be partially 
explained considering that T2W mainly 
provides information on tumor morphol-
ogy and stroma, while the CE T1W MRI can 
reflect the microenvironment and aggres-
siveness by showing microvascular density 
and perfusion,32 which would include more 
information on LVSI. The T1-original_fir-
storder_Kurtosis feature measures the peak-
edness of the distribution of values in the 
image ROI. The higher values of this feature 
indicate bigger variance and greater tumor 
heterogeneity. Our result showed that the 
values of this feature were bigger in the 
LVSI positive group than those in the LVSI 
negative group, which may indicate that the 
probability of being LVSI tends to be higher 
in tumors with greater heterogeneity. The 
T1-lo g-sig ma-5- 0-mm- 3D_gl dm_De pende 
nceVa rianc e feature measures the variance 
in dependence size in the image. The sigma 
value (equals to 5.0) was high in this feature, 

Figure 4. Boxplots of the 5 selected features from the peritumoral regions in the magnetic resonance images. Each box contains 25th and 75th quartiles 
and median line. P < .05 was considered as significantly different between the lymph-vascular space invasion (LVSI)-positive and LVSI-negative groups.

Figure 5. Cluster analysis of the 5 selected features and cervical cancer patients. The features 
(n = 5) were on the horizontal axis. The patients (n = 163) were on the vertical axis. The red  
and blue colors represent the LVSI positive and LVSI negative cervical cancer patients, 
respectively.
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indicating that the model mainly focuses on 
coarse textures (gray level changes over a 
large distance) in the image since the sigma 
value reflects the textural coarseness. The 
average values of the T2-wavelet-LHH_fir-
storder_Median feature were bigger in the 
LVSI positive group, which indicates that the 
gray level intensity was stronger in the cer-
vical cancer areas with LVSI positive in T2W 
MRI. Since the feature was derived from the 
peritumoral region at a 7 mm dilation dis-
tance outside the tumor, it can be partially 
explained considering that the tumor cells 
tend to migrate into peritumoral tissues 

and cause changes in gray levels in the peri-
tumoral regions in LVSI-positive patients. 
The result was partially similar to a previous 
report that suggested the wavelet filtered 
firstorder_Mean feature as an important 
predictor of LVSI in cervical cancer.4 The 
T2-la ws-L5 W5_gl dm_Sm allDe pende nceHi 
ghGra yLeve lEmph asis feature measures 
the joint distribution of small dependence 
with higher gray-level values in the image, 
which also indicates the important LVSI pre-
diction value of gray level changes within 
peritumoral regions. Most of the identi-
fied LVSI-related features (3 of 5) belong to 

high-dimensional features, which may par-
tially explain why radiologists can hardly 
predict the LVSI status through unassisted 
examinations on preoperative MRI. All the 
predictive features were from peritumoral 
regions, which may be explainable since 
variations of histogram and texture charac-
teristics in the peritumoral regions would 
be identified because tumor cells may dis-
seminate through lymphatic vessels in LVSI 
patients.33,34

The radiomics signature was built with 
the 5 selected features and generated 
good prediction performance with AUCs 

Figure 6. a-e. A radiomics nomogram integrated the radiomics signature and degree of cellular differentiation on prediction of LVSI. (a), construction of 
the radiomics nomogram; (b) and (c), calibration curves of the nomogram in the training and validation cohorts, respectively; (d) and (e), receiver 
operating characteristic (ROC) curves of the nomogram, radiomics signature, and clinical model in the training and validation cohorts, respectively.
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of 0.751 and 0.781 in the training and vali-
dation cohorts, respectively. Our results 
outperformed a recent work on predicting 
the LVSI in cervical cancer, which obtained 
a low prediction accuracy of 60%.4 The 
main reason might be that the study only 
focused on the tumor region in single-
sequence 1.5T MRI. On the contrary, we 
used 2-sequence 3.0T MRI and built mod-
els based on the peritumoral regions. We 
identified the degree of cellular differen-
tiation as the most important clinical factor. 
This is explainable since in clinical practice, 
the degree of cellular differentiation nega-
tively correlated to the degree of tumor 
malignancy which is one of the important 
factors that indicates the presence of LVSI. 
However, when used alone, the degree of 
cellular differentiation showed much lower 
overall performance compared with the 
radiomics signature.

We constructed the nomogram integrat-
ing the radiomics signature and degree of 
cellular differentiation and achieved the 
best prediction performance. The nomo-
gram also improved net benefits across the 
majority of the range of threshold prob-
abilities for cervical cancer patients. Our 
nomogram exhibited similar prediction 
AUCs compared with a recent work that 
described values of DWI combined with DCE 
T1W and T2W MRI in the prediction of LVSI 
based on tumoral regions, which generated 
AUCs ranging from 0.659 to 0.814.21 This 

may be attributed to the greater predic-
tive power of DWI compared with the CE 
T1W and T2W MRI used in our study, which 
merits a further analysis in our future work. 
As a visualized model, the proposed nomo-
gram may facilitate decision-making for 
clinicians without computer programing 
experiences. Therefore, we suggest that our 
nomogram can be considered as a noninva-
sive diagnostic tool and may contribute to 
early identifications of nulliparous women 
with early-stage cervical cancer which 
could be treated with more fertility-sparing 
operations if clinicians can preoperatively 
identify the LVSI.12,35 To use our nomogram, 
clinicians need to identify the 3 and 7 mm 
peritumoral regions in the CE T1W and 
T2W MRI images of a patient, followed by 
calculating the LVSI risk score based on the 
proposed formula. After that, clinicians can 
integrate other clinical information to give 
a comprehensive decision on candidate 
medical treatments.

There are limitations to this study. First, 
all samples were from a single hospital. 
Multicenter studies would need to be 
conducted to enlarge the sample size. 
Second, correlations between the human 
papilloma virus (HPV) and LVSI status were 
missing due to the absence of complete 
records of HPV status in our hospital. Third, 
this study only used sagittal MRI, without 
oblique axial T2W MRI. Comparisons of the 
performance of sagittal and axial MRI on 

the prediction of LVSI would be performed 
in the future. Fourth, accurate segmenta-
tion and assessment of the peritumoral 
regions were required since other organs 
such as the posterior wall or the lumen of 
the bladder may be included when the 
masks were progressively enlarged with 
different dilation distances, especially for 
the patients with FIGO stage IB2 who have 
a relatively large tumor with narrow peri-
tumoral stroma. Fifth, DWI was not evalu-
ated in this study, because the DWI was 
not used for routine examinations in our 
hospital. In addition, important serologi-
cal characteristics (e.g., DLL4)36 that were 
correlated with LVSI in cervical cancer 
were not involved in this study. In addi-
tion, the degree of cellular differentiation 
that integrated into the nomogram model 
can be obtained from preoperative cervi-
cal biopsy but not as accurate as postop-
erative pathological analysis. Detailed 
investigations about the degree of cellular 
differentiation will be conducted in our 
future work. Finally, the deep learning-
based gradient-weighted class activation 
mapping (Grad-CAM) algorithm37 will be 
applied to identify the most important 
peritumoral regions associated with the 
LVSI status.

In conclusion, our findings demonstrated 
that the proposed radiomics nomogram 
were useful predictive tools for LVSI preop-
eratively and noninvasively. The results may 
contribute to the auxiliary prediction of the 
possibility of LVSI in early-stage cervical 
cancer, which is helpful for offering timely 
treatments.
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